In [1]:
import pandas as pd
from matplotlib import pyplot as plt
import seaborn as sns
In [15]:
df = pd.read_csv("AB_NYC_2019.csv")
In [17]:
df.head()
Out[17]:
id name host_id host_name neighbourhood_group neighbourhood latitude longitude room_type price minimum_nights number_of_reviews last_review reviews_per_month calculated_host_listings_count availability_365
0 2539 Clean & quiet apt home by the park 2787 John Brooklyn Kensington 40.64749 -73.97237 Private room 149 1 9 19-10-2018 0.21 6 365
1 2595 Skylit Midtown Castle 2845 Jennifer Manhattan Midtown 40.75362 -73.98377 Entire home/apt 225 1 45 21-05-2019 0.38 2 355
2 3647 THE VILLAGE OF HARLEM....NEW YORK ! 4632 Elisabeth Manhattan Harlem 40.80902 -73.94190 Private room 150 3 0 NaN NaN 1 365
3 3831 Cozy Entire Floor of Brownstone 4869 LisaRoxanne Brooklyn Clinton Hill 40.68514 -73.95976 Entire home/apt 89 1 270 05-07-2019 4.64 1 194
4 5022 Entire Apt: Spacious Studio/Loft by central park 7192 Laura Manhattan East Harlem 40.79851 -73.94399 Entire home/apt 80 10 9 19-11-2018 0.10 1 0

Categorical¶

Bar Graph¶

In [20]:
sns.countplot(data=df , x=df["room_type"])
Out[20]:
<Axes: xlabel='room_type', ylabel='count'>
No description has been provided for this image
In [5]:
sns.countplot(data=df, x= "neighbourhood_group")
Out[5]:
<Axes: xlabel='neighbourhood_group', ylabel='count'>
No description has been provided for this image
In [21]:
sns.countplot(data = df, x ="neighbourhood_group" , hue = "room_type")
Out[21]:
<Axes: xlabel='neighbourhood_group', ylabel='count'>
No description has been provided for this image

Pie Chart¶

In [34]:
df["room_type"].value_counts().plot(kind = "pie" , autopct = "%.2f")
Out[34]:
<Axes: ylabel='count'>
No description has been provided for this image
In [37]:
df["availability_365"].head(20).value_counts().plot(kind ="bar")
Out[37]:
<Axes: xlabel='availability_365'>
No description has been provided for this image
In [9]:
df2 = sns.load_dataset("titanic")
In [10]:
df2.head()
Out[10]:
survived pclass sex age sibsp parch fare embarked class who adult_male deck embark_town alive alone
0 0 3 male 22.0 1 0 7.2500 S Third man True NaN Southampton no False
1 1 1 female 38.0 1 0 71.2833 C First woman False C Cherbourg yes False
2 1 3 female 26.0 0 0 7.9250 S Third woman False NaN Southampton yes True
3 1 1 female 35.0 1 0 53.1000 S First woman False C Southampton yes False
4 0 3 male 35.0 0 0 8.0500 S Third man True NaN Southampton no True
In [11]:
sns.countplot(x = df2["survived"])
Out[11]:
<Axes: xlabel='survived', ylabel='count'>
No description has been provided for this image
In [35]:
sns.countplot(x = df2["embark_town"] , hue= df2["survived"])
Out[35]:
<Axes: xlabel='embark_town', ylabel='count'>
No description has been provided for this image
In [13]:
df2["class"].value_counts().plot(kind = "pie", autopct = "%.2f")
Out[13]:
<Axes: ylabel='count'>
No description has been provided for this image
In [14]:
sns.countplot(x = df2["alone"])
Out[14]:
<Axes: xlabel='alone', ylabel='count'>
No description has been provided for this image