In [2]:
import pandas as pd
import seaborn as sns
from matplotlib import pyplot as plt
In [3]:
df = pd.read_csv("AB_NYC_2019.csv")
In [3]:
df.head(2)
Out[3]:
id name host_id host_name neighbourhood_group neighbourhood latitude longitude room_type price minimum_nights number_of_reviews last_review reviews_per_month calculated_host_listings_count availability_365
0 2539 Clean & quiet apt home by the park 2787 John Brooklyn Kensington 40.64749 -73.97237 Private room 149 1 9 19-10-2018 0.21 6 365
1 2595 Skylit Midtown Castle 2845 Jennifer Manhattan Midtown 40.75362 -73.98377 Entire home/apt 225 1 45 21-05-2019 0.38 2 355

Histogram¶

In [4]:
sns.histplot(df["neighbourhood"].head(100))
Out[4]:
<Axes: xlabel='neighbourhood', ylabel='Count'>
No description has been provided for this image
In [9]:
sns.histplot(df[df["price"]<1000] , x= "price")
Out[9]:
<Axes: xlabel='price', ylabel='Count'>
No description has been provided for this image
In [8]:
sns.histplot(df[df["number_of_reviews"]<100] ,x = "number_of_reviews")
Out[8]:
<Axes: xlabel='number_of_reviews', ylabel='Count'>
No description has been provided for this image

Distplot¶

In [12]:
sns.distplot(df["availability_365"])
C:\Users\Satyam\AppData\Local\Temp\ipykernel_23924\1603039620.py:1: UserWarning: 

`distplot` is a deprecated function and will be removed in seaborn v0.14.0.

Please adapt your code to use either `displot` (a figure-level function with
similar flexibility) or `histplot` (an axes-level function for histograms).

For a guide to updating your code to use the new functions, please see
https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751

  sns.distplot(df["availability_365"])
Out[12]:
<Axes: xlabel='availability_365', ylabel='Density'>
No description has been provided for this image
In [8]:
df["price"].value_counts(bins = 20)
Out[8]:
(-10.001, 500.0]     47862
(500.0, 1000.0]        805
(1000.0, 1500.0]       100
(1500.0, 2000.0]        53
(2500.0, 3000.0]        21
(2000.0, 2500.0]        20
(3500.0, 4000.0]        11
(4500.0, 5000.0]         6
(9500.0, 10000.0]        6
(4000.0, 4500.0]         6
(6000.0, 6500.0]         4
(3000.0, 3500.0]         2
(5500.0, 6000.0]         2
(7000.0, 7500.0]         2
(7500.0, 8000.0]         2
(5000.0, 5500.0]         2
(6500.0, 7000.0]         1
(8000.0, 8500.0]         1
(8500.0, 9000.0]         0
(9000.0, 9500.0]         0
Name: count, dtype: int64
In [20]:
# sns.boxplot(df[df["price"]<500]["price"])
sns.boxplot(df[df["price"]<500]["price"])
Out[20]:
<Axes: ylabel='price'>
No description has been provided for this image
In [19]:
sns.boxplot(df[df["reviews_per_month"]<10], y="reviews_per_month")
Out[19]:
<Axes: ylabel='reviews_per_month'>
No description has been provided for this image
In [23]:
df2 = sns.load_dataset("titanic")
In [36]:
sns.histplot(data=df2 , x="age")
Out[36]:
<Axes: xlabel='age', ylabel='Count'>
No description has been provided for this image
In [28]:
df2[df2["fare"]==0]
Out[28]:
survived pclass sex age sibsp parch fare embarked class who adult_male deck embark_town alive alone
179 0 3 male 36.0 0 0 0.0 S Third man True NaN Southampton no True
263 0 1 male 40.0 0 0 0.0 S First man True B Southampton no True
271 1 3 male 25.0 0 0 0.0 S Third man True NaN Southampton yes True
277 0 2 male NaN 0 0 0.0 S Second man True NaN Southampton no True
302 0 3 male 19.0 0 0 0.0 S Third man True NaN Southampton no True
413 0 2 male NaN 0 0 0.0 S Second man True NaN Southampton no True
466 0 2 male NaN 0 0 0.0 S Second man True NaN Southampton no True
481 0 2 male NaN 0 0 0.0 S Second man True NaN Southampton no True
597 0 3 male 49.0 0 0 0.0 S Third man True NaN Southampton no True
633 0 1 male NaN 0 0 0.0 S First man True NaN Southampton no True
674 0 2 male NaN 0 0 0.0 S Second man True NaN Southampton no True
732 0 2 male NaN 0 0 0.0 S Second man True NaN Southampton no True
806 0 1 male 39.0 0 0 0.0 S First man True A Southampton no True
815 0 1 male NaN 0 0 0.0 S First man True B Southampton no True
822 0 1 male 38.0 0 0 0.0 S First man True NaN Southampton no True
In [29]:
sns.distplot(df2["age"])
C:\Users\Satyam\AppData\Local\Temp\ipykernel_23924\49255041.py:1: UserWarning: 

`distplot` is a deprecated function and will be removed in seaborn v0.14.0.

Please adapt your code to use either `displot` (a figure-level function with
similar flexibility) or `histplot` (an axes-level function for histograms).

For a guide to updating your code to use the new functions, please see
https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751

  sns.distplot(df2["age"])
Out[29]:
<Axes: xlabel='age', ylabel='Density'>
No description has been provided for this image
In [15]:
sns.distplot(df2["fare"])
C:\Users\Satyam\AppData\Local\Temp\ipykernel_28088\3524834500.py:1: UserWarning: 

`distplot` is a deprecated function and will be removed in seaborn v0.14.0.

Please adapt your code to use either `displot` (a figure-level function with
similar flexibility) or `histplot` (an axes-level function for histograms).

For a guide to updating your code to use the new functions, please see
https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751

  sns.distplot(df2["fare"])
Out[15]:
<Axes: xlabel='fare', ylabel='Density'>
No description has been provided for this image
In [16]:
sns.boxplot(df2["age"])
Out[16]:
<Axes: ylabel='age'>
No description has been provided for this image
In [34]:
sns.violinplot(df2["sex"])
Out[34]:
<Axes: ylabel='sex'>
No description has been provided for this image
In [35]:
df2
Out[35]:
survived pclass sex age sibsp parch fare embarked class who adult_male deck embark_town alive alone
0 0 3 male 22.0 1 0 7.2500 S Third man True NaN Southampton no False
1 1 1 female 38.0 1 0 71.2833 C First woman False C Cherbourg yes False
2 1 3 female 26.0 0 0 7.9250 S Third woman False NaN Southampton yes True
3 1 1 female 35.0 1 0 53.1000 S First woman False C Southampton yes False
4 0 3 male 35.0 0 0 8.0500 S Third man True NaN Southampton no True
... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...
886 0 2 male 27.0 0 0 13.0000 S Second man True NaN Southampton no True
887 1 1 female 19.0 0 0 30.0000 S First woman False B Southampton yes True
888 0 3 female NaN 1 2 23.4500 S Third woman False NaN Southampton no False
889 1 1 male 26.0 0 0 30.0000 C First man True C Cherbourg yes True
890 0 3 male 32.0 0 0 7.7500 Q Third man True NaN Queenstown no True

891 rows × 15 columns

In [ ]: